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Solutions of generalized heat-conduction problems are obtained for a heat-sensitive 
half space heated by a moving heat source. 

In the movement of an electrical arc in the working chamber of a plasmatron [i, 2], the 
heat-source transfer rate can turn out to be comparable with the rate of heat propagation. 
The classical model may therefore prove to be insufficient for describing the temperature 
field. We consider, in connection with this, a generalized model, assuming that the thermo- 
physical characteristics depend on the temperature. 

If from the generalized heat-conduction law [3] 

and the heat-balance equations 

F i r /  
q = - -  )~ (t) grad r - -  % - - - ~  ( 1 )  

- - d i v q = c ( t )  dt _ w  (2) 
d'~ 

we eliminate the vector q, we obtain, for a constant convective transfer rate Vk, the 
following heat-conduction equation: 

div [~. (t) grad tl = 1 + % ~ c (t) d---~--- w , 

where the total derivative of w with respect to the time has the form [3] 

dw Ow 

d'~ 0T 
+- (v~ grad w), 

and the operator d2/d~ 2 is of the form 

d 2 0 2 

dT ~ 0T 2 
0 

+ 2 (vH grad) --z-- + (v~ grad) (v~ grad). 
oT 

When v k = 0 Eq. (3) reverts to a well-known form [4]. 

We consider an isotropic half space z > 0 whose thermophysical characteristics depend on 
the temperature. The half-space is heated by a point heat source moving with constant speed 
v a) over the surface z = 0+ along the Oy axis, b) perpendicular to it (along the Oz axis). 
Let the surface z = 0 be thermally insulated. The temperature and its derivatives with res- 
pect to the coordinates at infinity, as well as the initial temperature and heating rate are 
equal to zero. We then have, for the determination of the generalized three-dimensional non- 
stationary temperature field in the half space, the heat-conduction equation [4] 

div [% (t) grad t] = Ic (t) i - -  q6 (x) 1S+ (T) { 6+ (z) 6 (9 - -  vT), ( 4 )  
8 (V) ~+ (z - -  v~), 
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where 

0 z =  1 + ~ - ~ - ,  

1, 

s •  0 . 5 ~ 0 . 5 ,  

O, 

~+ (0 - dS+ ( 0 ,  
d;  

~ > o ,  

~ = o ,  

~ < o ,  

- -  o o ~ v ~ o o ,  

6 (;)- dS (0 
d~ 

1, 

S(O = 0,5, 

O, 
O~<z~<oo, 

_ _ , t O t  
c)z 

~ > o ,  

~ = o ,  

~ < o ,  

o ~ < - ~ .  

The boundary conditions are written in the form 0t [ = o , (5)  
az Jz=o 

at at at}  =o, tl~=o=tl~=o=O. 
t, Ox ' Oy ' Oz ~ (6) 

Introducing the Kirchhoff variable [5] 

- : I - L  ~ ~(t)dt (7) 0 

and taking into account the fact that for many metals (see [6]) a % const, we obtain in place 
of Eqs. (4) and (6) 

a o  16 q ~ (x) ls_~ (-c) i 6+ (z) 6 (v - -  v'O, (8)  
a ;~o ~ / 8 (v) ~+ (z - -  v-c), 

ao  [ o, 
(9)  Oz ]z=o 

where 

O0 a@ O0 I = O, Old=o--O, 0[~=o = O, ( i 0 )  
@' Ox' @ '  Oz ]~ 

c (t) co 

(t) G 
To solve the problem we employ in the case a) Fourier integral transformations with res- 

pect to x and y and a Laplace transformation with respect to T; in case b) cosine Fourier 
transformations with respect to z, Fourier with respect to x, and Laplace with respect to T, 
taking into account the necessary conditions of (9), (i0). 

d2N ( i i )  
, f g  = - -  @ ~+ (z)-~, dz" 

d-'6 ~g6 q ~ (v),i,, (12) 
dg" -- Xo 

where 

2a  5 ~ .t' Oexp(i(~x + ~ly)--s'Odxdydr; 

i ~ ~ 

= ~ ; ,I ,! Oexp(i~x--s~)cos~zdxdzd,; 
- - o .  0 0 
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- -  2 ,  7o:-  " ~+U+---s  +_ 2 ,  
a Cq a cq 

. / a 

"C r 
1 ~ 

-- 2= 5 ~ l [S+ (x) 6 (y - -  vz)] e• ( i W  - -  s.c) dyaz;  

1 .f .f l IS+ ('r) 6+ (z - -  v'c)] cos {z exp ( - -  s t )  dzd'c. 
;II 

o o 

The solutions of Eqs. (ii) and (12), taking into account the transformed boundary 
conditions at the surface z = 0 and at infinity, may be written, respectively, as follows: 

= q ~(exp ( - -  Tz) + exp (--  V ]el+)), ( 13 )  
2~o? 

6 -- q ~ (exp (-- Yo lYl+) + exp (-- To lYl-)), 
4XoYo 

(14) 

where 

Izl+ = z sign+ z, sign+z = 2S+ (z)- -  1. 

SSnce 

1 

(v) = - 7  [6+ (v) + ~ -  (v)], 
sign~y = 1, s i gn~z=  1, 

it is not difficult to see that function (13) satisfies Eq. (ii) and function (14) satisfies 
Eq. (12). 

We now take the inverse transforms of functions (13) and (14), using the reference data 
and the convolution theorems for the Fourier transform, the Fourier cosine-transform, and 
the Laplace transform [7, 8]. As a result, we obtain expressions for the Kirchhoff variable 
for each of the cases: 

X 

0 

I "I 1 --- 4~1 ~ ('~ - -  b ~-) [cos (y l+vT1)  ~l ~- %Wl sin (91 ~- v'q) ~l] d~ld%+ - -T  
Cq 

+ I/~. 
0 

| q 

ch 2%1 i// (I - -  4 '1"~-~- / ( '2 - -  b') c~ ' c q  / 

o., f 
4Zo=" ]/"r~ - -  c' �9 2"v---~-- X 

0 

(15) 

X 

+ 

I - 4~. @I (~ - c.)[cos (z_. ~,) ~ + ~.< s~n (,_ + =,)] a;d,,~- 
cq / 

2"C r 
1 / T s _ _  C 2 ,i ch 

0 

2T~ ~ (~2__ c~) cos .~zd~ + 
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' "!i I/( -I/~12 _ _  c ~ . 2 ~  
c 0 

co 7 
(16)  

where 

b _ 
+ z ~ VV + f 

, y ~ = = g - - - v T ,  c - -  , z _ + = z _ _ w .  
Cq Cq 

For a fixed heat source (v = 0) we have 

~  - - .  
0 

 ,!ich , 2"rr . 2"~r 
' 0 

X 

x / (  

• exp ( 

I -- 4n 2 (~  -- b 2) 
dT1 ~ r  

cos ~lgdrl l~  .~ __ b--" + - I / ~  - -  b 2 X 

2T~ , 2z~ V ~ (1--4~12 7 ('r'~-- b~) cos~lyd~l. 
0 

For the classical case (~r = 0, Cq + ~) it follows from Eqs. (15), (16) that 

O-- q exp(_ylo)[exp(_R1o)erfc( RI m]/~-d) + 
4~,OR 1 2 "l/~-a 

+ exp (Rio) erfc (. 2 ~- -a  -5 o = (91, R1, 

(17)  

( 1 8 )  

where 

r  
O = ~ [w (z_, R- ,  ~ ) +  W ( - - z + ,  R+, ~)1, 

2 

O) = ' 
2a ' 

R1 Yx 2 + y ~ + z  2. R• Y x ' - ~ - v  ~ , r  = = +._+, e r f c ~ =  1 - - e r f 4 .  

Letting �9 + =, we obtain from Eqs. (18), (19) the solutions 

(19) 

O = 2 Q exp(--  (Vl + R1)o), (20)  
R 1  

O = Q [exp (- -  (Z 1 -~- i~__) O) ~--I iA - exp (--  (R+ - -  z+) o) R$_11, (21) 

corresponding to a quasistationary thermal regime. 

These solutions are given in [6, 9-11] for the case in which the thermophysical charac- 
teristics do not depend on the temperature. For the sources moving along the surface z = 
0+, a solution was obtained by another method starting from the differential equation [9] 

at 
A{ + 2o = 0, (22)  

0vl 

where 

a~ a .~ o ~ 
A I =  - - + - - - - k - -  

Ox ~ Oy~ Oz ~ 
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Fig. 4. Variation of temperature T~ as a function of the parameter 
F for ~ = 2. 

In our case, in accordance with Eq. (4), the differentSal equation has the form 

at  q ( 2 3 )  a { + 2 m  . . . .  6 ( x ) 6 ( ~ ) a + ( z ) ,  
Oy~ 

i.e., the action of the heat source is accounted for in the differential equation, whereas in 
the aforementioned papers it is taken into account in the boundary condition. Here X = const. 

In [9], in determining the thermoelastic displacement potential, at/ay I is determined from 
Eq. (22). But if we determine 3t/ay i from Eq. (23), we arrive at the equation 
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whosesolution, as i s  wel l  known ! ! 2 ] ,  has the  form 

0 0  ~_ 1 - : v  a~ t--- q 1 - i - v  at ( 2 5 )  
- -  i 

Og: 1 - -  v 2co 8:t),,eo 1 - -  v R1 

Consequently, we may write the thermoelastic displacement potential as follows: 

t'I)= l + v czt t i- 
1 -- v 2o~ , 4n~,R: 

An analogous situation appears in determiniog~.the thermoelastic displacement potential 
in an finite plate heated by a moving heat source. In determining the thermoelastic displace- 
ment potential in [9] no account was taken of the right side q/2%6 6(x, y:) of the differen- 
tial heat-conduction equation for determining the quasistationary temperature field; as 
a result of this, certain terms are missing in the expressions for the thermal stresses. 
This was first noted in [13], It was remarked upon later by ft. A. Vinokurov [14]. 

For aluminum, for example, T r = i0-:: sec from [15]; hence, Cq = 3-I0 s cm/sec. The 
thermal conductivity coefficient for aluminum varies linearly with the temperature in 
accordance with the law [5] 

(t) = ~o (1 -- kt). (27) 

Consequently , the temperature field t, in terms of the Kirchhoff variable 8, is expressed as 
follows: 

t = 1 ( 1  - - 1 / i  --  2kO). (28) k 

Knowing the variable O and the magnitude of the heatpropagation rate Cq, we can 
calculate from relation (28) the generalized temperature field in a half space heated by a 
moving heat source. 

We consider now the case in which the heat source displacement speed is equal to the 
speed of heat propagation. It follows from Eq. (12) with Cq = v that 

{ ( x ~ + z ~ )  1 [ a ( x ~ + z  ~ ) ]  2a~q 6(,)6(~8+(z)} (29) O = S + ( v )  2QS(~:)exp �9 -- l q - ~  1 + , 
4aT: vT~ w:v~ 4ave ~o v~ 

where T: = x - y/v. 

If in Eq. (26) we neglect inertia of the heat source [16], we arrive at the expression 

O 2Q S+ (~)S (~0 exp ( x ~ + z ~ ) .  (30) 
0% 4a% 

From the Eqs. (28) - (30)  we have c a l c u l a t e d  the  t empera tu re  f i e l d  in a ha l f space  fo r  
~ = xv/ia =]/2, ~ = yv/ia = 2, ~ = zv/ia=]/2 after transforming these equations to the 
dimensionless form: 

T ---- ---~ (I -- ]/I -- ~q), 

where 

"~= S+(F) exp(  " F - 1  F--11 ) S ( F - - 1 ) [  

= S+ (F___~) exp ( 1 
F - - 1  F - - 1  

[~ = 8ko~Q; T = t/4Qm; t~ = O/4Qm; F = (v%)/4a . 

(31) 

, ( ,  :)]  32, 
1 +  4 (F- -  1) F - - 1  ' 

--) S(F--1), 

The corresponding solution of the classical problem, according to 
as follows: 

(33) 

(15), may be written 

~_o~ ..... 1 . . e x p [ _ 2 ( l _ F ) l [ e x p [ _ 2 q / l + ( l _ F ) ~ ]  • 
8 1/1  q- (l - - F )  2 L ] 

(34) 
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Xerfc( ]/I--(1-F)2-l/~-- "F'T)@exp(2~/lii-(1--F)~) erfc( -VI~'-(1--F)~']/ff- @ ]/~)]' (34) 

The results of our calculations are shown in Figs. 1-4. In these figures the continuous, 
the dash-dot, and the dash curves correspond to the solutions (31), (32); (31), (33); and 
(31), (34). These graphs show that the largest value of the temperature is attained with 
the complete generalized solution; moreover, the maximum value is reached considerably sooner 
than with the incomplete generalized (neglecting inertia of the heat source) and classical 
solution. 

NOTATION 

A(t), thermal conductivity; c(t), coefficient of volumetric heat capacity; S+(~), S(~), 
assm~etric and symmetric unit functions; T, time; t, temperature field; q, heat source power; 
erf ~, probability integral; ~r, relaxation time of the heat flux; Cq, heat propagation rate; 
a, thermal diffusivity; X0, reference thermal conductivity; co, reference volumetric heat 
capacity; s, Laplace transformation parameter; $, n, Fourier transformation parameters along 
x, y; ~, Fourier cosine transformation parameter along z; v, Poisson coefficient; st, 
temperature coefficient of linear expansion. 
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